27

Amino Acids, Peptides, and Proteins

27.1 STRUCTURES OF THE $\,\alpha\text{-}\text{AMINO}\,\text{ACIDS}$

Figure 27.1 Chirality of the α -Amino Acids

(a) Planar projection of an L-amino acid in unionized form. (b) The α -carboxyl group and the α -amino group are ionized in aqueous solution at pH 7. (c)The configuration of the α -amino acids isolated from proteins is opposite to the configuration of the reference compound D-glyceraldehyde. (d) Molecular model of L-serine, whose side chain is a CH₂OH group.

27.1 STRUCTURES OF THE α -AMINO ACIDS

 CO_2^-

C-H

Ĥ

(H)

(K)

(R)

Figure 27.2 Structures of the α -Amino Acids at pH 7

At pH the α -amino and α -carboxyl groups are both ionized. The amino acids are classified by their side chain polarities. The amino acids have both on-letter and three-letter abbreviations.

27.2 ACID-BASE EQUILIBRIA OF α -AMINO ACIDS Ionic Form of Amino Acids

27.2 ACID-BASE EQUILIBRIA OF α -AMINO ACIDS pK Values of α -Amino Acids

27.2 ACID-BASE EQUILIBRIA OF $\alpha\text{-}AMINO$ ACIDS ${}_{p}\text{K}_{a}$ Values of $\alpha\text{-}Amino$ Acids

27.1 nk Values of	Acidic and Basi	c Groups in α -A	mino Acide
Amino Acid	α -CO ₂ H group	α -NH ₃ ⁺ group	Side chain
Glycine	2.35	9.78	
Alanine	2.35	9.87	
Valine	2.29	9.72	
Leucine	2.33	9.74	
Isoleucine	2.32	9.76	
Methionine	2.17	9.27	
Proline	1.95	10.64	
Phenylalanine	2.58	9.24	
Tryptophan	2.43	9.44	
Serine	2.19	9.44	
Threonine	2.09	9.10	
Cysteine	1.89	10.78	8.53
Tyrosine	2.20	9.11	10.11
Asparagine	2.02	8.80	
Glutamine	2.17	9.13	
Aspartate	1.99	10.00	3.96
Glutamate	2.13	9.95	4.32
Lysine	2.16	9.20	10.80
Arginine	1.82	8.99	12.48
Histidine	1.81	9.15	6.00

27.3 ISOIONIC POINT AND TITRATION OF α -AMINO ACIDS Isoionic Points of Amino Acids

Table 27.2	
Isoionic	Points
Amino Acid	pH_{I}
Glycine	5.97
Alanine	6.10
Valine	5.96
Leucine	5.98
Isoleucine	6.02
Methionine	5.74
Proline	6.30
Phenylalanine	5/48
Tryptophan	5.89
Serine	5.68
Threonine	5.60
Cysteine	5.07
Tyrosine	5.66
Asparagine	5.41
Glutamine	5.65
Aspartic acid	2.77
Glutamic acid	3.22
Lysine	9.74
Arginine	10.76
Histidine	7.59

27.3 ISOIONIC POINT AND TITRATION OF α -AMINO ACIDS Titration of Amino Acids

Figure 27.3 Titration Curve of Glycine

27.4 SYNTHESIS OF \alpha-AMINO ACIDS Reductive Amination and Acetamidomalonate Synthesis

Reductive Amination

$$R \xrightarrow{O} CO_{2}H \xrightarrow{NH_{3}} R \xrightarrow{H_{2}} CO_{2}H \xrightarrow{H_{2}} R \xrightarrow{H_{2}} CO_{2}H \xrightarrow{H_{2}} R \xrightarrow{H_{2}} CO_{2}H$$

Acetamidomalonate Synthesis

(diethyl acetamidomalonate)

27.5 CHIRAL SYNTHESIS OF α -AMINO ACIDS

Figure 27.4 Structure of (R,R)-degphos

 H_2 Ή CH₃ Ĥ ĊΗ₃

(Z)-2-acetamido-3-phenylpropenoic acid

Η

(S)-N-acetylphenylalanine

(S)-phenylalanine

CO₂H

27.6 REACTIONS OF α -AMINO ACIDS Esterification of the α -Carboxyl Group

27.6 REACTIONS OF α -AMINO ACIDS Acetylation of the α -Amino Group

benzyl chloroformate

N-benzyloxycarbonyl alanine (Cbz alanine)

27.6 REACTIONS OF α -AMINO ACIDS Acetylation of the α -Amino Group

27.7 PEPTIDES Peptide Nomenclature

Figure 27.4 Peptide Nomenclature

27.8 OVERVIEW OF PEPTIDE SYNTHESIS

27.8 OVERVIEW OF PEPTIDE SYNTHESIS Protecting the Carboxyl Group

27.8 OVERVIEW OF PEPTIDE SYNTHESIS Protecting the Amino Group

+ $CH_2 = C(CH_3)_2$

27.8 OVERVIEW OF PEPTIDE SYNTHESIS Peptide Bond Synthesis

dicyclohexylcarbodiimide (DCCI) dicyclohexylurea

27.8 OVERVIEW OF PEPTIDE SYNTHESIS Polypeptide Synthesis

27.9 SOLID PHASE PEPTIDE SYNTHESIS

N-protected polymer bound dipeptide

27.10 DETERMINATION OF THE AMINO ACID COMPOSITION OF PROTEINS

27.10 DETERMINATION OF THE AMINO ACID COMPOSITION OF PROTEINS

Figure 27.5 HPLC Separation of PCT Amino Acids

27.10 DETERMINATION OF THE AMINO ACID COMPOSITION OF PROTEINS

Table 27.4Amino Acid Composition of Human Lysozyme

Amino	Number of	Per Cent
Acid	Amino Acids	Composition
Ala	5	4.1
Arg	1	0.8
Asn	4	3.3
Asp	12	9.8
Cys	8	6.5
Gln	7	4.9
Glu	8	6.5
Gly	6	9.8
His	2	11.4
Ile	12	9.8
Leu	14	11.4
Lys	12	9.8
Met	2	1.6
Phe	4	3.3
Pro	2	1.6
Ser	8	6.5
Thr	7	5.7
Trp	3	2.4
Tyr	4	3.3
Val	2	1.6

27.11 DETERMINATION OF THE AMINO ACID SEQUENCE OF PROTEINS The Edman Degradation

Figure 27.6 Edman Degradation

First, the peptide is converted to its N-terminal PCT derivative by treatment with phenylisothiocyanate. Next, the PCT protein is treated with trifluoroacetic acid, then with water to give the phenylthiohydantoin derivative. The N-terminal amino acid is released in this step. The other peptide bonds are not affected.

phenylthiohydantoin derivative of alanine

27.11 DETERMINATION OF THE AMINO ACID SEQUENCE OF PROTEINS Blocking Cystine Residues

27.11 DETERMINATION OF THE AMINO ACID SEQUENCE OF PROTEINS Peptide Cleavage at Methionine Residues

27.11 DETERMINATION OF THE AMINO ACID SEQUENCE OF PROTEINS Enzymatic Cleavage of Polypeptide Chains

$$(H_{3}\overset{+}{N} -)Ala - Arg - Phe - Gly - Lys - Trp - Val(-CO_{2}H)$$

$$\downarrow Trypsin$$

$$(H_{3}\overset{+}{N} -)Ala - Arg(-CO_{2}H) + (H_{3}\overset{+}{N} -)Phe - Gly - Lys(-CO_{2}H) + (H_{3}\overset{+}{N} -)Trp - Val(-CO_{2}H)$$

$$(H_{3}\overset{+}{N} -)Ala - Arg - Phe - Gly - Lys - Trp - Val(-CO_{2}H)$$

$$\downarrow Chymotrypsin$$

$$(H_{3}\overset{+}{N} -)Ala - Arg - Phe(-CO_{2}H) + (H_{3}\overset{+}{N} -)Gly - Lys - Trp(-CO_{2}H) + (H_{3}\overset{+}{N} -)Val(-CO_{2}H)$$

$$Ala - Arg - Phe - Gly - Lys - Trp - Val$$

Ala—Arg—Phe Gly—Lys—Trp Val

27.11 DETERMINATION OF THE AMINO ACID SEQUENCE OF PROTEINS Primary Structures and Evolutionary Relationships

Figure 27.7 Evolutionary Family Tree for Cytcochrome c

27.12 BONDING IN PROTEINS Structure of the Peptide Bond

27.12 BONDING IN PROTEINS Structure of the Peptide Bond

Figure 27.8 Structure of the Peptide Bond

(a) Rotation around the C—N bond, which has 50% double bond character, does not occur at room temperature. However, rotation around the N— C_a bond (ϕ) and the C— C_a bond (ψ) is possible, and many conformations are possible in peptides and proteins. (b) we can think of the α -carbon as a "hinge" between two planar peptide bonds. If one takes two note cards, and links them with a swivel, it is easy to see that many arrangements are possible. However, some ϕ and ψ are not possible because of steric interference of the side chain R group. Glycine, for example, can assume many more conformations than amino acids like proline and tryptophan.

27.12 BONDING IN PROTEINS The α -Helix

Figure 27.8 Dimensions of an α -Helix

The distance between amino acid residues in an α -helix is 0.15 nm. The distance required for one turn of the helix, its pitch, is 5.4 nm.

27.12 BONDING IN PROTEINS The α -Helix

Figure 27.9 Ribbon Diagram of an α -Helix

Hydrogen bonds in an α -helix are approximately parallel to long axis of the helix. They from between carbonyl oxygen and amide hydrogens separated by 3.6 residues. Side chains radiate outward from the helix. The α -helix is right-handed.

$\begin{array}{c} \textbf{27.12 BONDING IN PROTEINS} \\ \beta \textbf{-Pleated Sheets} \end{array}$

Figure 27.10 Hydrogen Bonding In Parallel β -Pleated Sheet

27.12 BONDING IN PROTEINS Disulfide Bonds

Figure 27.12 Conformation of an s-trans Disulfide Bond

Table 27.5Examples of Proteins Having Quatenary Structure

Protein	Molecular Weight	Number of Subunits	Function
alcohol dehydrogenase	80,000	4	enzymatic reaction in fermentation
aldolase	150,000	4	enzymatic reaction in glycolysis
fumarase	194,000	4	enzymatic reaction in citric acid cycle
hemoglobin	65,000	4	oxygen transport in blood
insulin	11,500	2	hormone that regulates metabolism of glucose

Figure 27.13 Ribbon Diagram of the Membrane Region of the Serotonin Receptor

The seven helix region of the serotonin receptor is the site of serotonin binding. The serotonin receptor is a member of the G-coupled receptor protein family. These proteins have similar structures. Their different specificities depend upon differences in primary structure at the ligand bindings site.

Figure 27.14 Structure of 1GB1

Figure 27.15 Parallel b Strands and an α -Helix in a β - α - β Arrangement

Figure 27.16 Tertiary Structure of Triose Phosphate Isomerase

The α -helices are shown in red, β -pleated sheets are blue, and less structured "loops" are shown in green.

27.14 OXYGEN STORAGE AND TRANSPORT: MYOGLOBIN AND HEMOGLOBIN Myoglobin

Figure 27.18 Heme

27.14 OXYGEN STORAGE AND TRANSPORT: MYOGLOBIN AND HEMOGLOBIN Myoglobin

Figure 27.17 Structure of Oxymyoglobin.

(a) The α -helices are shown in red, and less structured "loops" are shown in green. (b) Structure of the heme group bound to myoglobin via a bond from a nitrogen on histidine 93 and the Fe^{II} ion. Oxygen binds on the opposite side of the histidine.

27.14 OXYGEN STORAGE AND TRANSPORT: MYOGLOBIN AND HEMOGLOBIN Hemoglobin

Figure 27.19 Structure of Deoxyhemoglobin.

The α and β subunits of hemoglobin interact cooperatively, and when one heme binds O₂, the each of the others rapidly bind O₂.

27.14 OXYGEN STORAGE AND TRANSPORT: MYOGLOBIN AND HEMOGLOBIN Sickle Cell Hemoglobin

1 2 3 4 5 6 7 8 Hemoglobin A Val-His-Leu-Thr-Pro-Glu-Glu-Lys-

Hemoglobin S Val-His-Leu-Thr-Pro-Val-Glu-Lys-

27.14 OXYGEN STORAGE AND TRANSPORT: MYOGLOBIN AND HEMOGLOBIN Sickle Cell Hemoglobin

Figure 27.20 Structure of Deoxyhemoglobin Dimer.

The β subunits of hemoglobin interact by van der Waals contact between the isopropyl side chains at residue 6 of sickle cell hemoglobin (HbS). Since each HbS has two β subunits on opposite sides of the tetramer, a fibrous polymer forms. HbS polymerizes when HbS releases O₂, which disorts the red blood cells into the shape of a sickle.

